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1. There is one important systematic error. In the proof of Theorem 13.1,
every occurrence (I count 7 of them) of the phrase 's € 11" should read
"s € I'" (delete the superscript 1). By the way, I should have stated

that the presentation of this proof closely follows Lallement [71].

2 The proof of the Krohn-Rhodes Theorem in §14 is (as far as I know) cor-
rect, but the inductive step is incorrectly described on p. 331. What
is shown is that 'S is decomposable into a wreath product of semigroup

actions, each of which has smaller measure or else is a group action

dividing S.

3. Two books and an article relevant to the subject were published more or
less simultaneously with the article. [1] is an exposition of the theory
of characters of wreath products with applications to representations
theory and to combinatorics. [2] constitutes a thorough reworking of
the albegraic side of automaton theory and contains among other things
two proofs of the Krohn-Rhodes Theorem, one a simpler version of the
proof given in §14 of my article, and the other a reformulation of the
Zeiger-Ginsburg proof which I mentioned on p. 330. This reformulation
yields a stronger theorem [2, Theorem 7.1] which makes possible an effi-
cient decomposition algorithm. [3] gives a new algebraic construction

of the real numbers directly from the integers.

[1] A. Kerber, Representations of Permutation Groups II. Lecture Notes in
Math 495, Springer-Verlag, 1975.

[2] s. Eileﬁberg, Automata, Languages and Machines, Vol. B. Academic Press,
1976.

[3] F. Faltin, N. Metropolis, B. Ross, and G.-C. Rota, The real numbers as
a wreath product. Advances in Math. 16(1975), 278-304.
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SOME APPLICATIONS OF THE WREATH PRODUCT CONSTRUCTION
CHARLES WELLS

1. Introduction. Any two semigroups can be combined, usually in more than one nonequivalent
way, into a third semigroup known as a wreath product of the two semigroups. This construction has
been used by group theorists for many years (see Section 16), and in the last fifteen years it has come
to be used widely in the study of semigroups.

It is the aim of this article to state and prove a theorem of Krohn and Rhodes, which says that a
semigroup action can be decomposed (in a certain technical sense) into the wreath product of simple
groups and certain special semigroups. This theorem was motivated by the fact that putting two
automata in series with no feedback corresponds roughly to taking the wreath product of certain
semigroups associated with the automata. A number of other applications of the wreath product are
also described in the course of the article.

Section 2 provides an introductory discussion giving a natural setting for the wreath product. A
number of necessary facts about semigroups are given in Section 3. The wreath product involves
semigroup actions in an intimate way; they are described in Section 4, and a brief description of the
closely-related idea of an automaton is in Section 5.

The wreath product is defined in Section 6, and in a more general way in Section 7. After some
necessary preliminaries in the next two sections, the structure of the wreath product is described
explicitly as a semi-direct product in Section 10. The following three sections provide a number of
ways of embedding (in a sense more general than usual) a semigroup action in a wreath product. In
one of these sections (Section 12), the important Kaloujnine-Krasner Theorem for groups is proved.
These results are then used to prove the Krohn-Rhodes Theorem in Section 14. The last two sections
are occupied with descriptions of other applications of the wreath product and with historical remarks.

The Bibliography is fairly extensive. A reference to Rumpelstiltskin (64] means the article written
in 1964 by Rumpelstiltskin. Two articles written in the same year are distinguished by letters; e.g., [64a],
[64b].

2. Triangular actions. The kind of situation to be studied involves a set X and a set S of operators
on X: for each s € S, there corresponds a function s¢: X — X. In group character theory, X is a
complex vector space and S is a group, so that s¢ may be regarded as an invertible matrix. In many
applications to abstract group theory, X is the underlying set of a group S and s¢ is right
multiplication by s. In combinatorics, X is often a combinatorial structure (e.g., a graph) and § its
group of automorphisms. For automaton theorists, X is a set of states and S an input alphabet. A
scientific theory can often be cast in this mold, too, as observed by Krohn, Langer and Rhodes [67]
(from which interesting article I have drawn the discussion in this section): X is the set of possible
states allowed by the theory and § is the set of possible inputs (perturbations). An ambitious working
out of this idea is in Rhodes [71].

To study such a system, it is desirable to parametrize the set X in such a way that the action by § is
analyzed into simpler actions on the parameters. Another way of saying this is: Regard X as a set of
vectors, in the broad sense of n-tuples from some Cartesian product of sets, and describe the action of
S via the changes it makes in the coordinates.

It is too much to hope that § would act coordinatewise: that is, that for s € S, the effect of s¢ on a
coordinate would depend only on that coordinate. In general, it will depend on some or all of the
other coordinates. What can frequently be done is that coordinates can be found which are ordered so
that the effect on a given coordinate depends only on that coordinate and the coordinates following it.
The action is then said to be triangular.

In most applications, it is convenient to take S to be a semigroup. If it is not already a semigroup, S
is usually replaced by the free semigroup on the elements of S (the set of finite strings of elements of S
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with concatenation as operation) or sometimes by the semigroup generated by the set of functions s¢
with functional composition as operation. Moreover, one usually wants the property that the
successive action of two elements of S is the same as the action of the product of those elements.

These considerations mean that the proper objects to study are “semigroup actions”; these are
described in succeeding sections, and the wreath product is defined in terms of them.

3. Semigroups. A semigroup is a set S together with an associative multiplication on S. A unity in
S is a (necessarily unique) element 1 € § satisfying 1s = s1=s for all s € S. A semigroup with unity is
a monoid. A subsemigroup of a semigroup S is a subset of § closed under multiplication. T is a
subgroup of S if T is a subsemigroup of S which is a group. Warning: The unity of T may not be the
unity of S; S may not even have a unity. T is a unitary subgroup of a monoid S if T is a subgroup of §
and its unity is the same as that of §.

If S has no unity, a unity may be adjoined: let 1 be an element not in S, and define S' = S U {1} to
be the semigroup with S as a subsemigroup and 1s = s1=s for s € 5. If § has a unity, §' denotes S.

If X is a set, TransX is the set of all functions from X to X together with the binary operation,
composition of functions. A function in TransX is called a transformation of X. SymX is the unitary
subgroup of TransX of all permutations of X (bijections from X to X). TransX is contained in the
larger monoid PF(X) of all partial functions from X to X. An element f € PF(X) is by definition a
function from a subset of X to X. If f, g € PF(X), fo g is the function with domain {x € dom f|xf €
dom g} (which may be empty), with x(f c g) = (xf)g. (Observe that I write functions on the right and
compositions from left to right. This is undoubtedly the Wave of the Future. It makes functional
diagrams easier to read and corresponds to the natural order of doing things on a pocket calculator.)

Let S be a semigroup. If z € S satisfies zs = sz = z for all s € S, then z is a zero of S. PF(X) has a
zero (the empty function), but not TransX. If ¢ € S satisfies e’ = ¢, ¢ is idempotent. A unity of a
semigroup is idempotent; so is a zero. A function f € TransX is idempotent if and only if its image is
contained in its set of fixed points.

If Visasubset of S and s € §, then sV = {sv|v € V}. Vs and more complicated symbols like sVt
are defined analogously.

A subset I of a semigroup S is a right ideal if is € I for every i € I and s € S. Left ideal is defined
similarly. A right or left ideal is necessarily a subsemigroup. If € S, then hS is a right ideal of S. S is
a left and right ideal in S*. A group has only the empty set and the whole group as ideals. Some
authors do not count the empty set as an ideal or subsemigroup.

'If S and T are semigroups, a function ¢: S — T is a homomorphism if (ss')¢ = (s¢)(s'¢) for all
s,s' € 8. If e is idempotent, then e¢ is idempotent. If ¢ is surjective and 1 is a unity of S, then 1¢ is a
unity of T'; the same statement is true of zeroes. T is a homomorphic image of S if S$p=T;ie.,if ¢ is
surjective.

If S and T are semigroups, S| T (S “divides” T)if S is a homomorphic image of a subsemigroup
of T. “Divides” is a reflexive, transitive relation. Two finite semigroups divide each other if and only if
they are isomorphic.

The following technical lemmas will be used in the proof of the Krohn-Rhodes Theorem and may
be skipped on first reading. The reader unfamiliar with semigroups will find their proofs a good
illustration of elementary semigroup-theoretic proof techniques.

Lemma 3.1. Let S be a finite semigroup, and let x € S. Then some power of x is an idempotent.

Proof. Let k and n be the minimal integers such that 0 < k < n and x* = x". Then x**"™* = x* s0

by induction x**™" ™ = x* for all integers m = 0. Let s be a positive integer for which k +s =
m(n — k) for some m. Then it is easy to see that (x***)*= x*™".

LEmMA 3.2. Let S be a finite semigroup, ¢ a semigroup homomorphism with domain S, and S¢ a
group. Then there is a subgroup G of S such that G = S¢.
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Proof. Let G be a minimal subsemjgroup of S with the property that G¢ = S¢. Let ¢ € G be an
arbitrary idempotent. Then e¢ is idempotent in S¢, hence is the unity of S¢ since the only idempotent
in a group is its unity. It follows that (eGe)¢ = G¢ = S, so by the minimality of G, eGe = G: in other
words, every element of G is of the form ege for some g € G. But e(ege) = (ege)e = ege, so that G isin
fact a monoid with unity e. We started with an arbitrary idempotent e ; hence ¢ is the unique idempotent
of G.

Now if x € G, x* = e for some k by Lemma 3.1. Then x - x*™' = x*"'. x = ¢, 50 x has an inverse.
This proves Lemma 3.2.

4. Semigroup actions. An action on the right by a semigroup S on a set X is a function (x, s)+ xs
from X X § to X satisfying

4.1 s(st)=(xs)t (xEX 5 tES).
Such an action determines a homomorphism ¢: § — TransX defined by
4.2) x(s¢)=xs (xeXs€eS).

Conversely, any homomorphism from § to TransX determines an action on X by S. Actions will be
denoted by boldface capitals (usually by the boldface form of the letter which denotes the semigroup)
or, when necessary, by the ordered triple (S, ¢, X) with ¢: § — TransX. TransX and SymX denote
the actions by Trans X and SymX respectively on X. (In their case ¢ is an inclusion function and 4.1)
is just the definition of composition of functions.)

An action on the left of S on X is a function (s,x)~ sx satisfying

4.3) (st)x=s(x) (s,tE€S xEX).

An action on the left determines and is determined by an antihomomorphism ¢: S — TransX. If
functions were written on the left and composition from right to left then a left action would
determine a homomorphism, but then a right action would determine an antihomomorphism. This
difficulty is not avoidable!

Actions in this article are on the right except where specified.

Actions are called by many other names in the literature. If § = (S, ¢, X) is an action, § is also
called a semi-automaton or machine and X may be called an S-set or S-operand.

I have already given TransX and SymX as examples of actions. Here are some other examples.

Example 4.1. Any semigroup of transformations of a set X acts on X; in particular, any
permutation group on X is an example of an action. Thus the automorphism group of a structure
(algebraic structure, graph, topological space, etc.) acts on the underlying set of the structure.

Example 4.2. Any semigroup S acts on its own underlying set by right multiplication. This action
will be denoted Ss. More generally, if I is a right ideal of S, then S acts on I by right multiplication;
this action is denoted §;.

Example 4.3. A group G with normal subgroup N acts on N on the right by setting
(4.4) n®*=g7'ng  (gEGnEN),

where the action is written as exponentiation to avoid confusion with multiplication in G. There is also
an action on the left taking n +» gng™" which is best denoted by writing G additively and setting

“4.5) gn=g+n—g (8EGnREN).

This notation will be used in Section 9.

Automata, discussed in the next section, provide another example of actions.

A pair (X, 6) is a morphism of actions from S=(S,¢,X) to T=(T,4,Y) if a: S—>T is a
homomorphism, §: X — Y is a function, and, for every s €S,
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@6 X X
4.6
l l

commutes: in other words, (x#) (sa) = (xs5)6 for x € X and s € S. Notice that then (S, e, X0) is an
action by S on X8. The category of actions and morphisms of actions is called Act. The analogous
category for left actions is Acty.

The morphism (a, 8) is injective (resp. surjective) if & and 8 are both injective (resp. surjective). §
is a subaction of T if « and 6 are inclusions. The morphism (e, #) is an isomorphism (= invertible in
Act) if and only if @ and 6 are both bijective. (This is a theorem, not a definition!)

If §=(S, ¢, X)and T = (T, ¢, Y) are actions, and there is a surjective morphism of actions from a
subaction of § onto T, then T divides S. In that case, T divides S in the sense of Section 3.

Of special importance is the case when a = ids. An S-morphism or equivariant map from (S, ¢, X)
to (8,4, Y) (same S) is a function 9: X — Y for which

4P (xs)8 = (x8)s (xEXsES)

(it looks like commutativity).

In the case of left actions, this becomes (sx}8 = s(x8) (it looks like associativity). The category of
actions by S and S-morphisms is denoted S-Act. S-Act is a much better-understood category than
Act; it is a topos, which means that in many ways it resembles the category of sets. See Wraith [75].

If the action G is a permutation group G on a set X, the group of G-automorphisms of G is
traditionally called the centralizer of G in SymX. The group of automorphisms in Act of G is the
normalizer of G in Sym X.

If § = (S, ¢, X) is an action, an S-partition is a partition II of X with the property that, if x = x’
(modI)and s € S, then xs = x’s (mod IT). Any S-partition II gives rise to a natural S-action on the set
by setting [x]s = [xs], where [ x] denotes the block of [T containing x. This action is denoted §™.

The fact just mentioned has a converse. The quotient of a function is the partition of its domain
whose blocks are the inyerse images of elements of the image of the function. The quotient IT of an
S-homomorphism F: § — T is then an S-partition. Furthermore, the class map x — [x] is a surjective
S-morphism from § to S", and there is a unique injective S-morphism from S™ to T so that

gL gn

P\
commutes.

Dual to the notion of action on an S-partition is the idea of a stable subset: a subset Y C X for
which ys € Y for all y € Y and s € S. The induced action is denoted Sy (cf. §; in example 4.2).

If a semigroup S is regarded as a category with one object, an action ¢: S — TransX is just a
functor from S to the category of sets. Some of the embedding theorems below hold in this more
general case. See Elkins and Zilber [73] and Wells [tbp].

5. Automata. An automaton is a semigroup action with certain additional structure. A definition
suited to our use is:

DermvitioN 5.1. An automaton is a septuple (X, A, B, ¢, 1, i, C), where X, A and B are sets,
(FA, ¢, X) is an action (FA denoting the free semigroup on the set A), u: A X X — B is a function,
i € A and C CB. X is the set of states, A the input alphabet, B the output alphabet, i the initial state,
and C the set of acceptor states.
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The part of the automaton of interest to us is the action (FA, ¢, X); in this context, the action is
often called a semiautomaton or machine (sometimes a machine has an output alphabet). There are
variations on the definition in the literature, as for example in Arbib [68b], Ginzburg [68], Hopcroft
and Ullman [69], and Eilenberg [74]. Davis [70] gives a neat categorical description of machines.
(Note: I object to the nearly universal use of the phrase “automata theory”’; after all, one does not say
“groups theory.”)

Both computer programs and computers themselves can be thought of as automata, but this
requires care to spell out precisely. See Scott [71] and Eilenberg [74].

Although this article focuses on semigroup actions, I want to emphasize that the major concerns of
automaton theorists do not lie in that direction. The major emphasis in automaton theory may be
described this way: Say a subset L (a “language”) of FA is accepted by the automaton
(X, A, B, ¢, u, i, C) if w € L if and only if iw € C. The problem is to describe connections between
properties of an automaton and properties of the language which it accepts.

6. Wreath products. It is now possible to define the basic object of study of this article. Let
§=(S,¢,X)and T = (T, ¢, Y) be actions. The wreath product $ wr T of S by T (in that order) is a
semigroup action of a certain semigroup SwrT on the set X X Y. To define it, let $¥ denote the set of
all functions from Y to S. The underlying set of SwrT is $¥ X T and the action is given by

(6.1) (xy)(E )= (x(yF),yt) (xEXyEY,FESY1ET)

Thus the action on the first coordinate depends on both coordinates, whereas the action on the second
coordinate depends only on the second coordinate.

To calculate the composition of two such functions, some notation is needed. For F, G € SY, let
F+ G be defined by

(6.2) YE+G)=yF-yG (y€Y),

the product on the right side taking place in S. This is fairly common notation, and one of only a few
places in mathematics where + denotes a not necessarily commutative operation. It will fit with the
notation of (4.5).

Now suppose (G, u)E SY x T also. Then

[(x, Y)(E OI(G, u) = (x(yF), yT)(G, u)
= ([(x(YP)](yG), (yt)u)
=(x, y)(F +1G), tu),
where tG € SV is defined by

(6.3) y(tG)=(y)G.
Thus multiplication in SwrT is given by the formula
(6.4) (F.1)°(Gu)=((F+1G),m) (F,GESY;4ueT),

which incidentally shows that SwrT is closed under composition. It is straightforward to show that
multiplication is associative. It is apparent from (6.4) that the semigroup SwrT depends on S, T, and
the action of T on Y, but not on the action of S on X. SwrT will sometimes be written “Swr(y)T” to
emphasize this. It is the abstract wreath product corresponding to SwrT.

Because of the independence of Swr(y)T from ¢, many authors define Swr(y)T given only S, T,
and T, without reference to an action by S. Such authors then define an action of Swr(y)T on X X Y
by (6.1).

Note 1. If Y is finite, Swr T can be represented as a semigroup of matrices. Let Y ={1,---, n}. If
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(F;t) € SwrT, define the n X n matrix M(F 1) by
iF if j=ir
(65) M(E t)ij =

0  otherwise.

These matrices have exactly one entry in a given row. The mapping (F,t)— M(F, t) is a semigroup
homomorphism which is an isomorphism when the action by T is faithful. (Two matrices M (F,t) are
multiplied in the obvious way.) Furthermore, if x = (x,, - -, x,) is any list of n elements of X, then the
list x' = x[ M(F; 1)"] obtaining by “multiplying” (in the obvious way) x by the transpose of M(F, t) has
the property

(6.6) (x")ie = (x;) (iF).

Because of the transpose, this defines an action on the left of SwrT on X", A special case of this
action is described by Ore [42]; the general case (not in matrix-theoretic terms) by Harary [59b].
Another special case appears in Section 10 below, preparatory to describing the structure of SwrT as
a semigroup. A nice application of wreath products as matrix groups appears in Wiegold [63].

Note 2. Let o, = (Y, A, B, %, A, D) and o, = (X, B, C, &, 1, j, E) be automata, with the output
alphabet of the first equal to the input alphabet of the second. If they are hooked up in series:

6.7) input— o/, — o, ~ output,

then a word w in the input acts on ¥ by ¥, and it also causes &, to change state; but this latter action
depends on the state 4, was in, because the output from ., depends on that state. In other words, w
acts on X by a function yF: X - X depending on y € Y. Regarding (6.7) as one big automaton with
state set X X Y, we have that w induces

(%, y)= (x (yF), yw)
(compare (6.1)); whence the connection between automata and wreath products.

7. The wreath product of an ordered set of actions. In this section, I shall describe how to construct
the wreath product of a set of semigroup actions indexed by an ordered set I The construction is a
special case of a construction of Holland [69]. When T has two elements, the construction reduces to
that given in section 6. If the reader follows through the discussion below with I'={1,2,3} (usual
ordering), he will discover that the action given on X is triangular in the sense of section 2.

Let I be a partially ordered set, and (Si)ier a set of actions indexed by i; let S, = (S, ¢, X,).
Define:

(a) X= HiEIXi-

(b) For each i€ I M, = [;-.X.. (If there are no J > i take M; to be a one-element set.)

(€©) W=1ILSM

(d) The ith coordinate of x € X, meM, weEW tobe x, m, w, respectively.

(e) If x EX, x' is the element of M; which agrees with x (the projection of x on M;). Thus, if
X E€X, (x"); =x; for all j> i (If there are no J>1 x" is the unique element of M)

W acts on X by an action w defined this way:

(7.1) (w) = xi(x'w) (ELxeXwe w).
If v, w € W, then [x(ow)], = xi(x'v:)[(xv)'w.] so that
(7.2) (ow) = v, +v'w,

where v'w;: M, — S, is defined by
(7.3) u(v'w)=(uw)w, (ELUE M,v,w e W)
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(W, , X) is then the wreath product of the system {Si}ier
If 1={1,---,n} with the usual ordering, (W, @, X) is denoted Wri-,S.

ProvositioN 7.1. Let S, i =1,2,3, be actions. Then (SwrS;)wrS8; = Swr(S,wrSs) = wri_,S:

The proof is straightforward.

8. Some constructions. In this section and the next, some properties which semigroup actions may
have, are defined, and some constructions are made. These will then be used in Section 10 to describe
the abstract wreath product as a semigroup.

Let § = (S, ¢, X) be a semigroup action. Then S¢ is a semigroup of transformations on X called
the constituent of S.

If Y is a stable subset of X, there is a natural S-morphism res (for “restriction”) from the
constituent of § to that of Sy such that ¢y = ¢ ores, where ¢y is the action of S on Y.

If S is a monoid with unity 1s, then (S, ¢, X) is unitary if

8.1) xls=x (x € X).

Then 1s¢ = idx, where idx denotes the identity function from X to X.
It will be assumed throughout this article that, if S is a group, then the action by S is unitary.
A semigroup action § = (S, ¢, X) is faithful if ¢ is injective; thus

8.2) (xs=xt forall xEX) > s=1t

In this case, § is isomorphic to the constituent of . Observe that if Y is a stable subset of X, then Sy
may not be faithful even if § is, since two elements of S may agree on Y without agreeing on all of X.
Any transformation semigroup acts faithfully. If S is any monoid, § acts faithfully on itself by right
multiplication.
§ is transitive if for every ordered pair (x,x") € X X X, there is s € S for which xs = . fx€EX
write

(8.3) xS ={xs|s € S}
Then § is transitive if and only if xS = X for every x € X.

Warning: It is not necessary that x € xS if S is not a monoid.
If X is a set and z € X, the constant function c,: X — X satisfies

(8.3) Xc, =2z (x € X).

If § = (S, $, X) is a faithful action, S% denotes the semigroup S¢ U CX, where CX is the semigroup
of constant functions on X. § will be regarded as a subsemigroup of S by the obvious identification
between elements of S and Sé. The natural action of $% on X is denoted S°.

Similarly, $%° denotes the subsemigroup of S¢ generated by the nonconstant functions in S¢, and
§~° the corresponding action. If every function in S¢ is constant, Sx° will be {idx} by convention.

The proof given in Section 14 of the Krohn-Rhodes theorem requires some delicate maneuvering
among S, 8§, and §°°

The following facts are useful and easy to prove.

Proposition 8.1. If S is a group and § = (S, ¢, X) an action, then
(a) S is faithful if and only if the only element of S fixing everything in X is the unity of S.
(b) S is transitive if and only if xS = X for at least one x € X.

ProrosiTion 8.2. If S is a semigroup, then
(a) S acts faithfully on S* by right multiplication.
(b) Right multiplication is transitive if and only if S is a group.
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ProposiTion 8.3. For P any of the four words below, if S and T are both P, then so is SwrT:
(a) unitary (b) faithful
(¢) transitive (d) group.

9. Semidirect products. It is natural to consider semigroup actions § = (S, ¢, E) where E has
additional structure and each map in the constituent of § is an endomorphism of the structure. For
example, S is a semigroup of matrices and E is a vector space, or S is a group acting continuously on a
topological space E. Here, one special case is needed, that where E is also a semigroup and S acts on
the left.

This causes notational difficulties; the device of Example 4.3 will be followed here. A semigroup S
acts on a semigroup E on the left if there is a function (s, e)» se from S X E to E for which

9.1) (st)e=s(te) (s,tES,e €E), and
9.2) s(etf)=se+sf (sE€S,efEE),

where E is written additively.

Such an action gives rise to an antihomomorphism ¢: § —End E (End E is the endomorphism
monoid of the semigroup E), and conversely any such antihomomorphism yields an action of S on the
left on E.

Morphisms are defined as in Act, yielding a category Sem-Act.

If the semigroup § acts on the semigroup E on the left, a new semigroup EsdS, the semidirect
product of E by S, may be constructed. (Some authors would say: “The semidirect product of S by
E”.) The underlying set of EsdS is E x X, and multiplication satisfies

(9.3) (es)(fity=(e+sf,st) (efEEstES).

(One must check associativity.) Mapping the action of S on E to EsdS is the object map of a functor
SD from Sem-Act to the category of semigroups; the definition of the morphism map is left to the
reader.

When S and E are monoids with unities 1s and 0z respectively, and the action of S on E is
unitary, then (Og, 1s) is a unity for EsdS which is therefore a monoid. Then EsdS has submonoids
E x{1s} and {0} X S which are isomorphic to E and § respectively, and it is easy to check that if s is
invertible in S, then it has (Og, s ") as inverse in EsdS, and that for e € E, conjugating (e, 1s) by (O, $)
yields (se, 1s). (That is conjugating as in (4.5), not as in (4.4).) Thus any left action by a monoid on a
monoid can be embedded in a bigger monoid in which the invertible elements act by conjugation. In
particular, the semidirect product of groups NsdG with G acting on N contains a copy of N as a
normal subgroup, a copy of G as a subgroup, and the action of the copy of G on the copy of N by
conjugation is the same as the given action of G on N. Thus group actions on groups can always be
internalized in a semidirect product.

10. The structure of the abstract wreath product. Let Y be a set, S a semigroup. Then S is a
semigroup under the operation + defined by (6.2). If (7, , Y) is a right semigroup action, there is a
canonical left semigroup action of T on S ¥ defined this way: If t € T, G € S, then ¢G is defined as in
Section 6 by

(10.1) s(1G)=(st)G  (s€S).

To show that this gives a semigroup action, it is necessary to check that (1##')G = H'G)for tt'ET
and G € S¥, and that (G + G'Y=tG +G' for t € T and G, G'€ S, Both are casy.

For a fixed T, the map which associates the action (T, ¢, Y) and the semigroup S to the action
defined above is the object map of a bifunctor E(Y,S): T-Act X Sem — Sem-Act which is con-
travariant in (T, ¢, Y) and covariant in S. The definitions of the morphism maps are again left to the
reader (copy the definitions of the morphism maps of a hom-functor).
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It Y={1,2,--+,n}, S¥ may be identified with the Cartesian power S" by regarding F: Y — S as
the n-tuple (1F,2F,- -+, nF). The action of T on S¥ can be written this way:

(10.2) 151, 8)=(Stn "y Sm)  (Su SR ESLET).
Then
() (53, 82) = (Suwy s+ Sna) = E(S10,7 7, Sur).
It is tempting, but mistaken, to think that
H(S1es s Su) = (S0 * * > See)-

The action is on the positions the elements occupy (alibi) rather than the elements themselves (alias). I
recall two days of bafflement when reading the paper by Ore [42] before I caught onto this.
The structure of the abstract wreath product can now be described.

Theorem 10.1. Let (S, ¢, X) and (T, 4, Y) be actions. Then Swr(y)T = S¥sdT.

Proof. This follows immediately from (6.4), the definition of semidirect product in Section 10, and
the definition of SY.

S is called the bottom semigroup of SwrT, and T the top semigroup. S is the basis semigroup.
When $ and T are monoids, S ¥ and T are canonically subsemigroups of SwrT, and S is embedded in
SwrT in many ways. One embedding in particular is the diagonal embedding, taking s € S onto
(¢, idr). The diagonal embedding takes S onto the scalar matrices when SwrT is written as a matrix
semigroup. S¥ corresponds to the diagonal matrices.

When S and T are groups, then S is a normal subgroup of SwrT, and the action ¢ is conjugation
of §¥ by the canonical copy of T in SwrT, as described in Section 9.

The functor which takes (S, ¢, X)and (T, ¢, Y) to SwrT is A o SD, where A and SD are described
at the beginning of this section and in Section 9 respectively. Since SwrT does not depend on ¢ and
X, this functor factors through a functor from Sem X T-Act to Sem which takes S and (T, ¢, Y) to
SwrT.

When Y is the underlying set of T and T acts by left multiplication, SwrT is called the standard
wreath product. A good deal is known about the structure of standard wreath products of groups (P.
Neumann [64]). Kerber [68] studied representations of standard wreath products, and Houghton [63]
their automorphisms. See also Kappe and Parker [70] and Huppert [67], pp. 94 ff and 101. Warning: If S,
T and U are semigroups, then (SwrT)wrU and Swr(TwrU) (standard wreath products) are both
defined, but are not isomorphic, except in trivial cases. This does not contradict Proposition 7.1!

When S is a group and T is Sym X, where X ={1,2,- -, n}, then SwrT is the complete monomial
group of degree n over S. The properties of this group have been studied by Qre [42]. See also Crouch
[55] and [60]. There are important differences between complete monomial groups and standard
wreath products of groups. For example, all the complements of the basis subgroup are conjugate in
the standard wreath product, but not necessarily in a complete monomial group.

When Y is infinite and $ is a monoid, the semigroup S has a subsemigroup $* consisting of all
those functions F: Y — S for which yF = 1 for all but a finite number of y € Y. It is easy to see that
$™ is taken into itself as a set by any ¢ € T under the action of T on S defined by (10.1); the
corresponding semidirect product is the restricted wreath product of S by T. Taking the restricted
wreath product preserves various properties. For example, if G and H are solvable groups, so is
GwrH for any action of H. This is not true of nilpotence, however (Baumslag [59]).

11. A decomposition schema. Let § = (S, ¢, X) be a semigroup action. Parametrizing S so that the
action becomes triangular means precisely to find actions M = (M, ¢, Y) and N= (N, p, P) so that §
divides Mwr N’; that is, so that there is a surjective morphism (o, 8): T— § where T is some subaction
of MwrN. This is called a decomposition of S, or an embedding of § in MwrN.
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The latter word, although common in the literature, can be misleading; it need not happen that
(e, 0) has a right inverse in Act. If it does, then § is isomorphic to a subaction of MwrIN; we say § is
homomorphically embedded in MwrN. Even if (@, 8) does not have a right inverse, however, it is still
true (because (a, #) is surjective) that each x € X and s €S corresponds to (y,p)€ Y X P and

(FEn)EMWIN  respectively in such a way that (y,p)d=x, (Fn)a=s and (a fortiori)
[(y, p)(F; n)]8 = xs. The point is that it might happen that x's'= xs, yet no choice of (y’,p’) and
(F', n') yields (y', p") (F', n') = (y, p)(F, n). In other words, the “embedding” may be multivalent as
well as nonhomomorphic. This should not bother the automaton theorist, who can filter out the
multivalence with the output map. He will be more concerned with keeping Y and P a reasonable
size, and with ensuring that M and N bear some reasonable relation to S.

In the next three sections, I shall describe a number of ways of decomposing semigroup actions
into wreath products. These methods will then be used to give a proof of the Krohn-Rhodes Theorem
(Section 14) and more briefly in some other applications. Some of the methods will give a
homomorphic embedding of the action into the wreath product; others only an embedding or
decomposition in the weaker sense just discussed.

In this section a general Schema for such decompositions is described. It includes many but not all
of the methods described below. It is a Schema rather than a Theorem because it gives a general way
for decomposing an action into a wreath product, but provides no control over the sizes or properties
of the semigroups or sets involved in the wreath product.

DeriNiTioN. Let 8§ = (S, ¢, X) be a semigroup action and II an § -partition of X. A coordinate
system for II is an ordered pair (M, {Bs}s<n) where M is an action by a semigroup M on a set Y, and
for each block B €11, Bs: B— Y is an injection satisfying the following requirement: For each s € §
and B €11 there is m3 € M such that for all x € B,

(11.1) (xBs)m 5 = (x5)Bc,
where C is the block of IT to which s takes elements of B;i.e., C = Bs. In other words, the partial

function induced on Y by B and s extends in at least one way to an action by an element of M.

Treorem 11.1 (Decomposition Schema). Let § = (S, ¢, X) be a faithful semigroup action with an
S-partition 11 and coordinate system (M,{Bs}scn). Then S divides MwrS™.

Proof. Let A: X — Y xII be defined by

(11.2) xA=(xBs,B) (x€BE€E)
and let @ = A™": 1mA — X (observe that A is injective). For each s € S, let F;: 11— M be defined by
(11.3) BF, =m} (B €1I),

where m 5 is an element of M satisfying (11.1). Let ¢ be the action of S on II. Then for all x € B,
Bell,

(11.4) [(xB5, B)(F., 56)]6 = (x3, (xBam 5, Bs)f)

by (11.1) and definition of the action M wrIl. Since § is a faithful, s is determined uniquely by (11.4),
so defines (F, s¢)a = s, for all elements (F, s¢) with F satisfying (11.3). This set of elements (F, s ) is
clearly a subsemigroup of the semigroup of M wr S, and (a, 6) is a surjective morphism of actions by
(11.4). This proves the Theorem.

Note. Given a set Y and injections Bz: B — Y for each B €11, one can always find a semigroup
action M of a semigroup M on Y making (M, {85 }s<n} a coordinate system, even in~ such a way that
the covering (a, 8) has a right inverse. For example, take an element e Y and let Y = Y U {e}. For
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s € § and B €11, define a transformation mz € Trans Y by
xsBs;, if y=xBs, xEB
yme =

e otherwise.

Let BF=mj5 for B€E€Il. Then (s~ (F, s<5), x_H(xBB,B)) for s € S, x€EBeEIL is an injective:
morphism from § to a wreath product of Trans ¥ by N acting on Y X X. The trouble is that Trans Y
is so large.

COROLLARY 11.2. Let S and M be as in Theorem 11.1, and suppose that M is faithful and all the Bs
are bijections. Then there is a homomorphic embedding § — Mwrll.

Proof. The conditions of the corollary force m s to be uniquely determined by (11.1), and hence
(Fs, s¢)to be uniquely determined by 5. Hence (e, 6)is not only surjective, but injective as required.

If § is transitive, Aut,X satisfies the requirements on M in this corollary, with II the set of orbits of
Auts<X and Y one of the orbits. (Krohn, Langer and Rhodes [67].) This corollary will be used to prove
the Kaloujnine-Krasner Theorem in Section 12.

CoroLLaRY 11.3. Let S be a faithful semigroup action with a stable subset Y. Then the set
M={Y}U{x},x € X - Y} is an S-partition, and S divides (Sy)° wrS".

Proof. Let y,€ Y and let By = idy, xBy=yo for x EX =Y. If s €S, let
{ S¢Y If B= Y

s

my = C, if B={x}, xEX-Y, xs€Y

C, if B={x}, xEX-Y, xs€X-Y,

where ¢y is the action of § on Y.
Then m 3 € 85, and it satisfies (11.1). The corollary thus follows from the decomposition schema.
This lemma will be needed later:

Lemma 11.4. If § = (S, ¢, X) has an S-partition 11 and coordinate system (M,{Bs}sen}, then
(M<,{Bs}sen} is a coordinate system for S¢. Hence S° divides Mewr(S").

Proof. Easiy.

12. Decomposition of group actions. In this section a sequence of propositions will be given which
culminate in the important Kaloujnine-Krasner Theorem, which says roughly that a finite group can
be homomorphically embedded in an iterated wreath product of the simple groups which occur as
factors in a composition series of the group. Enroute, a brief look will be taken at an application to
character theory.

ProposiTioN 12.1. Let G = (G, ¢, X) be a faithful group action and 11 a G-partition. Suppose that
the induced action of G on Il is transitive, let Y €11 and let Gy denote the constituent on Y of the
subgroup of G which fixes Y setwise. Then G is homomorphically embedded in GywrG".

Proof. Let BEIL, and let gz € G carry B to Y. Define fs: B— Y by
1Bs = xgs (x € B).
Then Bs is a bijection. Now let h € G, x € B€E€Il, xh € CE€II. Then
(xh)Bc = xhgc = xgsg 5" hgc = (xBs)g s hgc.

But if y €Y, then ygz'hge € Y. Hence by (11.1), Gy, together with the set {Bs}pen, forms a
coordinate system for G which satisfies the requirements of Corollary 11.2.

If G is transitive, then certainly the action of G on Il is transitive. Thus the proposition applies in
particular to any G-partition of any transitive group action.
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If G is a group with subgroup H, then G acts transitively on the set of right cosets Hg of H by
(12.1) (Hg)g'=Hgg'  (8,8'€G).

(This is clearly well-defined.) Indeed, every transitive action by G is G-isomorphic to an action of this
form (take H to be the subgroup fixing an element). Let G™ denote the constituent of G on the set of
cosets of H.

CoroLLaRY 12.2. Let G be a group with subgroup H and G /H the set of right cosets of Hin G. Then

H

Go is homomorphically embedded in HywrG*.

Proof. G (G acting on its own underlying set by right multiplication) is faithful and transitive,
and G/H is a G-partition. Let Y = H (which is a block of G/H). The subgroup of G which fixes H
setwise is H itself. The corollary then follows from Prop. 12.1 (see Wells [69]).

Observe that Cor. 12.2 embeds G in a wreath product of H by the constituent of G on G/H. If any
action of H on a set X is given, then G acts on X X (G/H) via this embedding (see Section 6).

Now suppose a k-dimensional complex representation 7 (a homomorphism into a multiplicative
group of k X k matrices with complex entries) of H is given, and suppose H has finite index 7 in G.
By using the construction in Corollary 12.2 and the matrix representation in Section 6, G may be
represented by n X n monomial matrices whose entries are k X k complex matrices. By what may best
be described as erasing parentheses, an nk-dimensional complex representations of G is obtained; it
is the representation of G induced by the given representation of H. Because of the relative ease of
calculating the character of such a representations, this construction is a fundamental tool used by
finite group theorists in constructing character tables. See Gorenstein [68], chapter 4, section 4, or
Lang [65], chapter VIII, section 6. Of special interest in this connection is the study of “M-groups”’;
see Huppert and Wielandt [62], Kerber [70], and the references therein. This construction is a special
case of the left adjoint construction in Wraith [75] 53, example (iii).

CoroLLarY 12.3. Let G be a group with normal subgroup H. Then G is isomorphic to a subgroup of
the standard wreath product Hwr(G/H).

Proof. Observe that the assumption that H is normal means that G/H is a group. The corollary
will follow from Corollary 12.2 if it is shown that G¥ is Act-isomorphic to (G/H)¢,xu. But that is
immediate from (12.1).

A direct proof of Cor. 12.3 is in H. Neumann [67], p. 46.

A group G is an extension of H by B if there is an exact sequence

1 > H->G—-B-—1,

(This means that there is a monomorphism from H into G and an epimorphism from G onto B such
that the image of the monomorphism is exactly the kernel of the epimorphism.) The preceding
corollary says that every extension of H by B is embedded in the standard wreath product of H by B.

Now let G be a finite group. It is well known that there is a sequence (not necessarily unique) of
subgroups 1= Ny, N, No, -+ N = G of G with the property that for i =0,1,---,k—1, N, is a
normal subgroup of N, and Ni,,/N, is simple (has no nontrivial normal subgroups). Furthermore,
the number of simple groups of a given isomorphism type is determined uniquely. This sequence is
called a composition series for G.

Thus G is an extension of N,_, by Ni/Ni_;. Furthermore, N,_; is an extension of N, , by
Ne-1/Ne—, and in general N; is an extension of N,_, by N:/N._, for i=1, -+ k. The following
theorem then follows from Corollary 12.3 by induction.

THeOREM 12.4. (Kaloujnine-Krasner [51a], p- 47). A finite group can be embedded in an iterated
standard wreath product of the simple groups occurring in a composition series of the group.

REMARKS. (1) In the notation preceding the statement of Theorem 12.4, let N, act on X, and let
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E: = Ni.i/N: for i Z 1. Then the embedding of the theorem gives a triangular action of G on the set
X X E; X -+ X E,. This fact will be used in the proof of the Krohn-Rhodes Theorem.

(2) Observe that the simple groups in the theorem divide the given group.

(3) “Kaloujnine” is frequently transliterated *“KaluZnin”.

(4) Actually, Kaloujnine and Krasner proved a more general theorem, allowing any tower of
subgroups instead of a composition series — but then the wreath product may not be standard. See
also Marchionna-Tibiletti [57].

13. Other decomposition theorems. In this section, two related decomposition techniques are
given which are needed for the proof of the Krohn-Rhodes Theorem. These two techniques are in a
way dual to the Schema of Section 11, since they decompose (S, ¢, X) by breaking up S instead of
breaking up X.

Tueorem 13.1. Let S be a monoid and S = (S, ¢, X) be a faithful unitary action, and suppose
§ =TUT, wherelisa left ideal and T a unitary submonoid. Let I' denote the induced unitary action by
I' on X, where I' = I U {15} even if I has a unity. Let T be the action by right multiplication of T on itself.
Then § divides I'wr T,

Proof. Let W =I'wrT*, and define mappings E: T—I', F,: T—1I" (for s € I') by

(13.1) E=idx (t€T)
and
(132) tF, = ts (teT,sel.

Let § denote the subsemigroup of W consisting of elements of the form (E, r) (t € T) and (F, c,)
(s €T, t ET). One checks that S is indeed a subsemigroup:

(E,t)(E, )= (E, tt') (Lt'eT)
(E, t)(F,, ¢)= (Fy ¢ (SEINLI'ET)
(F, c.)(E,t"Y=(F, cu) (sel' t'eT)

and (‘FS’ ct) (F;’, Ct’) = (F;ls', Cr') (S, sl E Il, t, t’ E T)

Define a: §— S by

(13.3) (Et)a=t (F,c)a=st (ET,sEI,
and §: XX T— X by
(13.4) (x,)o=xt (€Tx€EX).

Then o and 4 are surjective, and

[(x,t)8](E, t)a = xtt' = [(x, 1) (E, t")]®

by (6.1), (13.1), (13.3), and (13.4), and
[(x, )O1(F,, c)a = xtst’ = [(x, 1) (F,, )]0
by (6.1), (13.2), (13.3) and (13.4). By (4.6), this proves Theorem 13.1.

THEOREM 13.2. Let M be a finite monoid and M = (M, ¢, X) a unitary faithful action. Let G be the
group of units of M. Then I = M — G is a two-sided ideal of M, and M divides IwrGg, where I is the
induced action of I on X

Proof. First a proof that I is a two-sided ideal: If h € I then by right multiplication # induces a
mapping from M to M which is neither injective nor surjective, because if it were one it would have to
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be the other (M is finite!) and an element inducing a bijection is invertible. But then if m € M, neither
mh nor hm can induce bijections, so neither is in G.

Now the remainder of the proof is sketched; it is similar to that of Theorem 13.1.

Define E: G—1 and F;: G— I for s €1 by

gE = idx (g€ G)
and

gF.=gsg' (gEGsel).

The subset S of elements (E, g) and (F, g) for g € G and s € I is then a submonoid of IwrG. Define
a:$5—S by

(Egla=g  (F,g)a=sg
and 6: XX G— X by
(x,g)8 = xg.
Then (a, 8) is a surjective morphism of actions onto (S, ¢, X).

14. The Krohn-Rhodes Theorem. The Krohn-Rhodes Theorem says that simple groups and
certain semigroups U,, U, and Us are the fundamental semigroups into which finite semigroup
actions may be decomposed. Uj is the transformation semigroup on a two-element set consisting of
the two constant functions, and the identity function. U, is the subsemigroup of constant functions,
and U, is a subsemigroup (either one of them) consisting of one constant function and the identity
function.

TreorEM (Krohn-Rhodes [65]). Let S = (S, ¢, X) be a faithful semigroup action with S and X
finite. Then S divides an iterated wreath product of a finite number of semigroup actions T = (T, ¥, Y)),
where T, is either Uy, U, or Us or a finite simple group dividing S.

Norte: It can happen that the decomposition require U, even though U, does not divide S
(Meyer-Thompson [69], section 4). On the other hand, it is obvious that any occurrence of U, or U, in
the covering can be replaced by Us. Much more is known about the role the semigroups U,, U, and
Us play in the Krohn-Rhodes Theorem. For example, finite simple groups and U, U, Us are exactly
the irreducible semigroups: T is irreducible if whenever T|AwrB then T|A or T|B. This was
included by Krohn and Rhodes [65] in their statement of the theorem. More recent information about
this is in Stiffler [73].

Every cyclic group of prime order is simple. An automaton’ whose constituent is a cyclic group is
called a counter. The famous result of Feit-Thompson [63] thus implies that a group action by a group
of odd order can be decomposed into counters. There are many other finite simple groups, of course;
the discovery of finite simple groups is an active area of research (Carter [72], Gorenstein [68]).

The least number of groups needed in a covering of § by a wreath product is called the group
complexity of the actions. This has been the subject of active research lately. See Rhodes and Tilson
[72], Rhodes [74], Rhodes [to appear] and Tilson [to appear], the articles in Advances in Mathematics
Vol. 11 (1973), and the references therein.

The proof below is in essence due to Meyer and Thompson [69]. A very different proof is that of
Ginzburg [68] based on a proof by Zeiger which contained errors.

Proof of Krohn-Rhodes Theorem. The proof is by transfinite induction on a measure S| of §
defined this way:

(14.1) 181 = (s, 1X1,1S1).

Thus || S| is an ordered triple of positive integers; note that | $3°| > 0 by convention (Section 8).
The set of measures is lexicographically ordered.
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‘m,<n, or
(m1, mo, m3) < (nl, ns, n3) (=4 m; =N and ms < n, Or
mi=ny, my;=n, and ms<nas.

This is a well-ordering.

The smallest measure is (1, 1, 1), which makes S the one-element group, for which the Theorem is
true (if we take the one-element group to be simple, which not all authors do). Because of the
faithfulness assumption, the next occurring measure is (1,2, 1), for which the same comment applies.
The next two measures are (1,2,2) and (1,2, 3), which correspond to the actions defined above for U,
U, or U..

If (S, ¢, X) is a group, the Theorem is true by the Kaloujnine-Krasner Theorem. (Note that the
latter theorem is a bit stronger, since it says that the simple groups occurring in the wreath covering
are factors in a composition series for the group, rather than merely dividing the group. That isa
genuine distinction; for example, every alternating group on more than 4 letters is simple and contains
every smaller alternating group.)

I shall now show that if § is not a group and has measure larger than (1,2,3), then it divides a
wreath product TywrT, such that for i = 1,2,|T;| <|S| and T:° divides S. The theorem will then
follow by transfinite induction: Suppose the theorem is true of all actions with measure strictly less
than that of S. Then T; is covered by a wreath product of semigroup actions T; where Tj; is either Uy,
U, or U, or a finite simple group dividing 7. Then § is covered by Tuwr::-wrTpwr---.
Furthermore, if T; is a finite simple group, it divides T; and hence T (Lemma 3.1), and hence S.

Cast 1. §7° has a proper nontrivial $x*-subaction. That is a subset Y C X closed under action by
any nonconstant element of §. “Nontrivial” means that Y has more than one element.

Then by Corollary 11.3 and Lemma 11.4. §¢, and hence § divides (Sy ) wr(S™), where II is the
congruence on X which has Y as the only class with more than one element. Observe that (Sy )° wr(S™)°
is an action on the set Y XIL

It is easy to verify that 3 divides S, so |S¥|=[SX|. Since |Y|<[X [, it follows that
[8% <] 8]l (Implicitly used here is the fact that (Sx)™ = §x°)

Similarly, (") divides §7¢, and |II| < |X], so that |(§™)°| <|S].

Cast 2. § is a monoid, § is unitary, and the subgroup G of invertible elements of S satisfies
1< |G| <|S|. By Theorem 13.2, § divides IwrGs acting on X X G, where I =5 —G.

Clearly |I7°| = |$~|and || <|S|, so | I] < ||S]|. Moreover, I"* divides S. On the other hand,
G is a group action and G divides S.

Cast 3. S is not a group and does not satisfy Case 1 or Case 2. I also assume that S is a monoid
and § is unitary, because if the Krohn-Rhodes Theorem is true for finite unitary monoid actions it is
necessarily true for all finite semigroup actions. (If G is a nontrivial group, S a finite semigroup, and
G|S', then certainly G|S.)

S — {15} has no permutations, so is an ideal of S (no non-permutation times any element of S can
be a permutation, but 15 is a permutation). § — {15} cannot consist entirely of constant functions, for
then S~¢ ={idx}, §~° has a nontrivial subaction, and Case 1 holds (unless |X|=2, but then
Is=(1,2,3))

Thus there is ¢ € S with t# 1, ¢ nonconstant. Then 1 < | Xt| < | X|. Then St is a proper subset of
S — {15} or else Xt would be a subaction making Case 1 hold. Hence St is a proper left ideal of
S - {ls}

Let I be a maximal proper left ideal of § —{1s}. Let x €S — I'andlet T=Sx U{ls}. Then I U Sx
is a left ideal properly containing I, so I U T = S. T is a unitary submonoid, so Theorem 13.1 implies
that S divides I'wrT¢, where I' acts on X and T° on T.

Clearly (I') © and (T°)™° = T~ both divide S. It follows from the facts that I Yacts on X and that
|I'| < | S| that | '] < ||S]|. To show that || T|| < [|S|} it is necessary to show that | T7°| <|S7°| since
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we have no control over the relative sizes of the sets T and X being acted on. Since [$7¢| =2, if
T—{ls} consists entirely of constant functions, we are done. Otherwise, T—{1s} contains a
nonconstant element x, so by the same argument as for ¢, Sx is a proper subset of S and XSx = Xx is a
proper subset of X. If § — T consisted only of constants, this would imply that Xx is a proper nontrivial
S§x™° subaction, so Case 1 would hold. Hence S — T contains a nonconstant, so [T~ < [S7¢|, which
completes the proof of the Krohn-Rhodes Theorem.

Fic. 15.1

15. Applications to automorphism groups and combinatorics. An automorphism of the discon-
nected graph G in Fig. 15.1 must take one of the three connected components into the same one or
another one. Thus Aut G has a G-partition 11 consisting of the three components. It follows easily
from Prop. 12.1 that AutG is the wreath product of the cyclic group of order 2 (the automorphism
group of one component) by the symmetric group of degree 3 (the action of AutG on the
components). (Observe that AutG is not transitive.)

This is an instance of a general theorem known to graph-theorists which dates back at least to
Frucht [49]:

Treorem 15.1. Let a finite graph G be the disjoint union U™, U;Z; Ay, with A, connected and
A=A, if and only if j = 5. Then

AutG = H (AutA;; X Sym(n;)).

It is necessary that the components to be connected, and the theorem won’t work for infinite
graphs unless each component has no proper subgraph isomorphic to it.

An analogous theorem is true of partially ordered sets and of other kinds of structures for which
the disjoint union of two instances of that kind of structure is another structure of that kind.

Going back to a graph G, AutG sometimes has a fixed point which, when removed, puts one in the
situation of Theorem 15.1. Thus the graph G in Fig. 15.2. has Aut G = C,wrSym4. Erasing the edges
e and f would yield a graph with automorphism group Cowr(C, X C).

FiGc. 15.2
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See Harary [59] for another situation in which the automorphism group of a graph decomposes as
a wreath product.

This is a useful device for studying rooted trees, the automorphism groups of which are direct
products of wreath products of symmetric groups, if one insists that the automorphisms preserve roots
and levels (distances from roots). Thus the automorphism group of the tree in Fig. 15.3 is
(Sym2wrSym3) X (Sym2wrSym3wrSym2).

Fic. 15.3

For more on this, see McCarthy [tbp]. The opposite, synthetic problem of constructing a graph
with a given wreath product as automorphism has been studied by Frucht and Harary [70] and
Uebelacker [tbp].

This sort of analysis can be made for certain structures that appear in counting-problems.

Thus suppose one wants to segregate 8 distant objects into two groups of 3 and a group of 2. If the
two groups of 3 were to be kept distinct, so that for example (naming the objects by the first eight
digits) {{1,2,3}, {4,5, 6}, {7, 8} } were different from {{4,5, 6}, {1,2, 3}, {7, 8}}, the number of ways to do
this is the well-known multinomial coefficient

8!
(15.5) m(2, 3, 3) = m = 560.

But suppose the two groups of 3 are indistinguishable. How many ways can the objects be
arranged now? There are 8! ways to permute the objects, but some permutations do not yield a new
arrangement. For example, the permutation (1 4) (2 5 3 6) (7 8) applied to the arrangement {{1,2, 3}
{4,5,6}, {7,8}} leaves the arrangement unchanged.

Formally, define an arrangement as a partition of the set of integers from 1 to 8 into a set of two
and two sets of three integers. An automorphism of the arrangement is a permutation of the set which
leaves the partition unchanged. By the same sort of argument as for the graphs and trees before, the
automorphism group of any arrangement is (Sym(3)wrC,) X C,, which has 6°+2-2 = 144 elements.
Thus there are 8!/144 = 280 possible arrangements. In this simple case, one could have deduced this
directly from (15.5), but it is clear that the method is quite general. This problem is treated by Pélya
[37], in the paper in which he gave the wreath product its name.

In that paper, he introduced his general theory of counting which is a fundamental tool in
combinatorial theory. Many of its applications involve the wreath product. Good recent expositions of
his theory and generalizations are in Beckenbach [64] and Read [68].

A particular application which dates back to the turn of the century (see Burnside [55]) is to
centralizers of permutations.

THEOREM 15.2. Let ¢ be a permutation of a finite set, and suppose ¢ has n; cycles of length r, for
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i=1,2,---,m. Then the permutations which commute with ¢ form a group isomorphic to

fl (G, wrSym(n;)).

The formal similarity between Theorems 15.1 and 15.2 is no accident. One can represent a
permutation as a directed graph; for example as in Fig. 15.4, which represents the permutation 12

(345)(678).
1 3 6.
3 g% 7T

8
FiG. 154

A permutation commutes with this permutation if and only if it is an automorphism of the directed
graph, and the automorphisms of an n-cycle form a group isomorphic to C,. Theorem 15.2 then
becomes a special case of Theorem 15.1.

The more difficult task of constructing the centralizer in Sym(n) of a permutation group G on n
letters can be simplified by using Theorem 15.2 and a theorem of Kuhn [04]. The normalizer of G can
be described as a “twisted wreath product” (see Section 16). Certain sets of polynomials over finite
fields appear as wreath products; see Carlitz and Hayes [72], Lausch and Nobauer [73, Section 4.9]
(and the references there in), and Wells [74].

16. History, other applications and generalizations. Group actions with nontrivial G-partitions
(called imprimitive by group theorists) have been understood as long as groups have been known. The
earliest reference I have is Ruffini, Teoria generale delle equazioni, published in Bologna in 1799; but I
only know of it secondhand (Kuhn [04]). Other works in which the concept appeared include Cayley
[78], and Miller [01].

The wreath product in something like its present form appears in Loewy [29]. This apparently
came to the attention of 1. Schur, who suggested questions related to it to his students B. H. Neumann
and W. Specht (see Specht [33]). The name Kranzgruppe is due to Pélya [37] in a long and influential
paper already mentioned in Section 15. P. Hall developed the standard wreath product as a tool for
studying abstract groups, a technique continued by the Neumanns and many other group theorists and
in wide use today. This line of development has been ignored almost completely here, a lack I have
tried to make up for by including a sizeable selection of relevant papers in the Bibliography. Two
excellent expositions in specific areas are H. Neumann [67] and Kerber [71].

The abstract wreath product construction was extended to semigroups by B. H. Neumann [60].
The automaton theorists began studying wreath product decomposition of semigroups in the early
sixties, their initial major result being the Krohn-Rhodes Theorem (Section 14).

The wreath product is also used in other studies of semigroups not connected with the
Krohn-Rhodes Theorem, particularly in the work of Petrich [73a], [73b], [74] (and the references
therein).

The wreath product has been generalized in various ways. The wreath product of ordered groups is
discussed by B. H. Neumann [49], [60]. The verbal wreath product (where the basis group is a verbal
product rather than a direct product) is introduced by Smelkin [64]; see also Burns [66] and H.
Neumann [67]. Petrich [73a, V. 3], and [73b, Section 2] (and in other papers referred to there) allows
the functions in S to be defined only partly, yielding the partial-mapping wreath product. B. H.
Neumann [56, Section 8] constructs the crown product by amalgamating subgroups in the basis group.
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Various related constructions by B. H. Neumann (63], H. Neumann [67, p. 65], and Wong [67]
have been called the twisted wreath product. Krohn, Mateosian and Rhodes [67] used this
construction (they called it the # product) to characterize the concatenate of two “generalized
machines”, and Altinger [70] used a version almost identical with that of H. Neumann [67] just
mentioned to describe the normalizer of a subgroup of a symmetric group.

The wreath product construction has been extended to groupoids by Houghton [74b] and to
categories by Wells [tbp].

The author would like to thank C, Houghton, D. McCarthy, B. H. Neumann, J. Wiegold and the
referee for suggestions and corrections made to an earlier version of this paper, for historical
backgrounds, and for suggesting items to include in the Bibliography.
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